- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Sami, Shoaib Meraj (3)
-
Hasan, Md Mahedi (2)
-
Nasrabadi, Nasser M. (2)
-
Dawson, Jeremy (1)
-
Kashiani, Hossein (1)
-
Nasrabadi, Nasser M (1)
-
Rao, Raghuveer (1)
-
Soleymani, Sobhan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Sami, Shoaib Meraj; Hasan, Md Mahedi; Nasrabadi, Nasser M.; Rao, Raghuveer (, IEEE Transactions on Aerospace and Electronic Systems)Annotating automatic target recognition images is challenging; for example, sometimes there is labeled data in the source domain but no labeled data in the target domain. Therefore, it is essential to construct an optimal target domain classifier using the labeled information of the source domain images. For this purpose, we propose a transductive transfer learning (TTL) network consisting of an unpaired domain translation network, a pretrained source domain classifier, and a gradually constructed target domain classifier. We delve into the unpaired domain translation network, which simultaneously optimizes cycle consistency and modulated noise contrastive losses (MoNCE). Furthermore, the proposed hybrid CUT module integrated into the TTL network generates synthetic negative patches by noisy features mixup, and all the negative patches provide modulated weight into the NCE loss by considering similarity to the query. Apart from that, this hybrid CUT network considers query selection by entropy-based attention to specifying domain variants and invariant regions. The extensive analysis depicted that the proposed transductive network can successfully annotate civilian, military vehicles, and ship targets into the three benchmark ATR datasets. We further demonstrate the importance of each component of the TTL network through extensive ablation studies into the DSIAC dataset.more » « less
-
Kashiani, Hossein; Sami, Shoaib Meraj; Soleymani, Sobhan; Nasrabadi, Nasser M. (, 2022 IEEE International Joint Conference on Biometrics (IJCB), Abu Dhabi, United Arab Emirates)Although a substantial amount of studies is dedicated to morphing detection, most of them fail to generalize for morph faces outside of their training paradigm. Moreover, recent morph detection methods are highly vulnerable to adversarial attacks. In this paper, we intend to learn a morph detection model with high generalization to a wide range of morphing attacks and high robustness against different adversarial attacks. To this aim, we develop an ensemble of convolutional neural networks (CNNs) and Transformer models to benefit from their capabilities simultaneously. To improve the robust accuracy of the ensemble model, we employ multi-perturbation adversarial training and generate adversarial examples with high transferability for several single models. Our exhaustive evaluations demonstrate that the proposed robust ensemble model generalizes to several morphing attacks and face datasets. In addition, we validate that our robust ensemble model gains better robustness against several adversarial attacks while outperforming the state-of-the-art studies.more » « less
An official website of the United States government
